Ипотека. Законы и проекты. Новости. Калькуляторы. Заработок. Льготы. Доступное жилье
Поиск по сайту

Примеры ядерной энергии. Ядерная энергия и радиоактивность. Применение ядерной энергии в промышленности

Уже в конце 20 века проблема поиска альтернативных источников энергии стала весьма актуальной. Несмотря на то, что наша планета поистине богата природными ископаемыми, такими как нефть, уголь, древесина и т.д., все эти богатства, к сожалению, исчерпаемы. К тому же, потребности человечества растут с каждым днем и приходится искать все более новые и совершенные источники энергии.
На протяжении долгого времени человечество находило те или иные варианты решения вопроса альтернативных источников энергии, но настоящим прорывом в истории энергетики стало появление ядерной энергии. Ядерная теория прошла долгий путь развития, прежде чем люди научились применять ее в своих целях. Все началось еще в 1896 году, когда А.Беккерель зарегистрировал невидимые лучи, которые испускала урановая руда, и которые обладали большой проникающей способностью. В дальнейшем это явление получило название радиоактивности. История развития ядерной энергии содержит в себе несколько десятков выдающихся фамилий, в том числе и советских физиков. Завершающим этапом развития можно назвать 1939 год – когда Ю.Б.Харитон и Я.Б.Зельдович теоретически показали возможность осуществления цепной реакции деления ядер урана-235. Далее развитие ядерной энергетики шло семимильными шагами. По самым приблизительным подсчетам энергию, которая выделяется при расщеплении 1 килограмма урана, можно сравнить с энергией, которая получается при сжигании 2 500 000 кг каменного угля.

Но из-за начавшейся войны, все исследования были перенаправлены в военную область. Первым примером ядерной энергии, который человек смог продемонстрировать всему миру, стала атомная бомба… Потом водородная… Лишь спустя годы научное сообщество обратило свое внимание на более мирные области, где применение ядерной энергии могло бы стать действительно полезным.
Так начался рассвет самой молодой области энергетики. Стали появляться атомные электростанции (АЭС), причем первая в мире АЭС была построена в городе Обнинске Калужской области. На сегодняшний день насчитывается несколько сотен атомных электростанций по всему миру. Развитие ядерной энергетики происходило невероятно стремительно. Меньше чем за 100 лет она смогла достигнуть сверхвысокого уровня технологического развития. То количество энергии, которое выделяется при делении ядер урана или плутония, несравнимо велико – это сделало возможным создание крупных атомных электростанций промышленного типа.
Так как же получают эту энергию? Все дело в цепной реакции деления ядер некоторых радиоактивных элементов. Обычно используется уран-235 или плутоний. Деление ядра начинается, когда в него попадает нейтрон – элементарная частица, не имеющая заряда, но обладающая сравнительно большой массой (на 0,14 % больше, чем масса протона). В результате образуются осколки деления и новые нейтроны, обладающие высокой кинетической энергией, которая в свою очередь активно преобразуется в тепло.

Данный вид энергии производят не только в АЭС. Он так же используется на атомных подводных лодках и атомных ледоколах.
Для нормального функционирования АЭС им все-таки необходимо топливо. Как правило, это уран. Этот элемент имеет широкое распространение в природе, но при этом труднодоступен. В природе не существует залежей урана (как например нефти), он как бы «размазан» по всей земной коре. Самые богатые урановые руды, которые встречаются очень редко, содержат до 10% чистого урана. Уран обычно содержится в урансодержащих минералах в качестве изоморфно замещающего элемента. Но при всем это общее количество урана на планете грандиозно велико. Возможно в ближайшем будущем новейшие технологии позволят увеличить процент добычи урана.
Но столь мощный источник энергии, а значит и силы, не может не вызывать опасений. Постоянно ведутся споры о его надежности и безопасности. Трудно оценить какой ущерб наносит атомная энергетика окружающей среде. Настолько ли она эффективна и выгодна, чтобы пренебрегать такими потерями? Насколько она безопасна? Причем, в отличие от любой другой энергетики, речь ведется не только об экологической безопасности. Все прекрасно помнят страшные последствия событий в Хиросиме и Нагасаки. Когда человечество обладает такой мощью, встает вопрос а достойно ли оно такого могущества? Сможем ли мы достойно распоряжаться тем, что имеем и не разрушать это?
Если бы завтра на нашей планете закончились все запасы источников традиционной энергии, то ядерная энергетика, пожалуй, стала бы единственной областью, которая реально смогла бы заменить ее. Нельзя отрицать ее преимущества, но и не стоит забывать о возможных последствиях.

Атом состоит из ядра, вокруг которого вращаются частицы, называемые электронами.

Ядра атомов это мельчайшие частицы. Они - основа для всего вещества и материи.

В них заложен большой запас энергии.

Эта энергия высвобождается в виде радиации, когда распадаются некоторые радиоактивные элементы. Радиация опасна для всего живого на земле, но вместе с тем её используют для производства электричества и в медицине.

Радиоактивность — это свойство ядер не-стабильных атомов излучать энергию. Большая часть тяжелых атомов нестабильна, а у атомов, что полегче имеются радиоизотопы, т.е. радиоактивные изотопы. Причиной появления радиоактивности служит то, что атомы стремятся получить стабильность. На сегодня известно три типа радиоактивного излучения: альфа, бета и гамма. Назвали их так по первым буквам греческого алфавита. Первыми ядро излучает альфа или бета-лучи. Но если оно все еще остается нестабильным, тогда исходят гамма-лучи. Нестабильными могут быть три атомных ядра и каждое из них может излучать какой-либо из типов лучей.


На рисунке изображены три атомных ядра.

Они нестабильны и каждый из них излучает один из трех типов лучей.

Альфа-частицы имеют в составе два протона и два нейтрона. Абсолютно таким же составом обладает и ядро атома гелия. Двигаются альфа-частицы медленно и поэтому их может задержать любой материал толще, чем бумажный лист. Они мало чем отличаются от ядер атомов гелия. Большинство учёных выдвигают версию о том, что гелий на Земле имеет естественное радиоактивное происхождение.

Бета-частицы - это электроны, обладающие огромной энергией. Их образование происходит при распаде нейтронов. Бета-частицы также не особо быстры, могут пролетать по воздуху до одного метра. Поэтому препятствием на их пути может стать медный лист миллиметровой толщины. А если выставить заслон из свинца в 13 мм или из слоя воздуха в 120 метров, то можно уменьшить гамма-излучение вдвое.

Гамма-лучи - это электромагнитное излучение обладающее огромной энергией. Его скорость движения равна скорости света.

Транспортировку радиоактивных веществ производят в специальных свинцовых контейнерах с толстыми стенами для предотвращения утечки радиации.

Воздействие радиации крайне опасно на человека.

Она вызывает ожоги, катаракту, провоцирует развитие рака.

Измерить уровень радиации помогает специальный прибор - счётчик Гейгера, который издаёт щёлкающие звуки при появлении источника радиации.

Когда ядро испускает частицы, то оно превращается в ядро другого элемента, изменив при этом свой атомный номер. Это называется периодом распада элемента. Но если вновь образовавшийся элемент по-прежнему нестабилен, то процесс распада продолжается. И так до тех пор, пока элемент не станет стабилен. У многих радиоактивных элементов этот период занимает десятки, сотни и даже тысячи лет, поэтому принято измерять период полураспада. Взять, к примеру, атом плутония-2 с массой 242. После излучения им альфа-частиц с относительной атомной массой 4, он становится атомом урана-238 с такой же атомной массой.

Ядерные реакции.

Ядерные реакции делятся на два вида: ядерный синтез и деление(расщепление) ядра.

Синтез или иначе "соединение" подразумевает под собой соединение двух ядер в одно большое под воздействием очень высокой температуры. В этот момент выделяется большое количество энергии.

При делении и расщеплении происходит процесс деления ядра, освобождая при этом ядерную энергию.

Происходит это тогда, когда ядро бомбардируется нейтронами в специальном устройстве по д названием "ускоритель частиц".

При делении ядра и излучения нейтронов, выделяется просто колоссальное количество энергии.

Известно, что для получения большого количества электроэнергии необходима лишь единица массы радио топлива. Ни одна другая электростанция ничем подобным похвастаться не может.

Ядерная энергия.

Таким образом, энергию, что высвобождается при ядерной реакции, используют для получения электричества или как источник энергии в подводных и надводных судах. Процесс получения электричества на атомной станции основан на делении ядер в ядерных реакторах. В огромном резервуаре находятся стержни из радиоактивного вещества (например, урана).

Они атакуются нейтронами и расщепляются, выделяя энергию. Новые нейтроны расщепляются дальше и дальше. Это называется цепной реакцией. Эффективность подобного метода получения электричества невероятно высока, но меры безопасности и условия захоронения чересчур дорогостоящие.

Однако человечество использует ядерную энергию не только в мирных целях. В середине 20-го века было испытано и опробовано ядерное оружие.

Его действие заключается в выбросе огромного потока энергии, который приводит к взрыву. Когда заканчивалась Вторая мировая война, США, применили против Японии ядерное оружие. Они сбросили на города Хиросиму и Нагасаки атомные бомбы.

Последствия были просто катастрофическими.

Одних человеческих жертв было несколько сотен тысяч.

Но на этом учёные не остановились и разработали водородное оружие.

Их отличи в том, что ядерные бомбы основаны на реакциях деления ядер, а водородные на реакции синтеза.

Радиоуглеродный метод.

Для получения информации о времени смерти организма, применяют метод радиоуглеродного анализа. Известно, что в живой ткани содержится некоторое количество углерода-14, который является радиоактивным изотопом углерода. Период полураспада, которого равен 5700 лет. После смерти организма запасы углерода-14 в тканях уменьшаются, изотоп распадается, и по оставшемуся его количеству определяют время смерти организма. Так, например, можно узнать, как давно случилось извержение вулкана. Это можно узнать по застывшим в лаве насекомым и пыльце.

Каким образом ещё используется радиоактивность.

Радиацию используют и в промышленной сфере.

Гамма-лучами облучают продукты питания, чтобы сохранить их свежесть.

В медицине применяют радиацию при исследовании внутренних органов.

Также есть методика под названием радиотерапия. Это когда больного облучают малыми дозами, уничтожая раковые клетки в его организме.

Повсеместное применение ядерной энергии началось благодаря научно-техническому прогрессу не только в военной области, но и в мирных целях. Сегодня нельзя обойтись без нее в промышленности, энергетике и медицине.

Вместе с тем, использование ядерной энергии имеет не только преимущества, но и недостатки. Прежде всего, это опасность радиации, как для человека, так и для окружающей среды.

Применение ядерной энергии развивается в двух направлениях: использование в энергетике и использование радиоактивных изотопов.

Изначально атомную энергию предполагалось использовать только в военных целях, и все разработки шли в этом направлении.

Использование ядерной энергии в военной сфере

Большое количество высокоактивных материалов используют для производства ядерного оружия. По оценкам экспертов, ядерные боеголовки содержат несколько тонн плутония.

Ядерное оружие относят к потому что оно производит разрушения на огромных территориях.

По радиусу действия и мощности заряда ядерное оружие делится на:

  • Тактическое.
  • Оперативно-тактическое.
  • Стратегическое.

Ядерные боеприпасы делят на атомные и водородные. В основу ядерного оружия положены неуправляемые цепные реакции деления тяжелых ядер и реакции Для цепной реакции используют уран либо плутоний.

Хранение такого большого количества опасных материалов - это большая угроза для человечества. А применение ядерной энергии в военных целях может привести к тяжелым последствиям.

Впервые ядерное оружие было применено в 1945 году для атаки на японские города Хиросима и Нагасаки. Последствия этой атаки были катастрофичными. Как известно, это было первое и последнее применение ядерной энергии в войне.

Международное агентство по атомной энергии (МАГАТЭ)

МАГАТЭ создано в 1957 году с целью развития сотрудничества между странами в области использования атомной энергии в мирных целях. С самого начала агентство осуществляет программу «Ядерная безопасность и защита окружающей среды».

Но самая главная функция - это контроль за деятельностью стран в ядерной сфере. Организация контролирует, чтобы разработки и использование ядерной энергии происходили только в мирных целях.

Цель этой программы - обеспечивать безопасное использование ядерной энергии, защита человека и экологии от воздействия радиации. Также агентство занималось изучением последствий аварии на Чернобыльской АЭС.

Также агентство поддерживает изучение, развитие и применение ядерной энергии в мирных целях и выступает посредником при обмене услугами и материалами между членами агентства.

Вместе с ООН МАГАТЭ определяет и устанавливает нормы в области безопасности и охраны здоровья.

Атомная энергетика

Во второй половине сороковых годов двадцатого столетия советские ученые начали разрабатывать первые проекты мирного использования атома. Главным направлением этих разработок стала электроэнергетика.

И в 1954 году в СССР построили станцию. После этого программы быстрого роста атомной энергетики начали разрабатывать в США, Великобритании, ФРГ и Франции. Но большинство из них не были выполнены. Как оказалось, АЭС не смогла конкурировать со станциями, которые работают на угле, газе и мазуте.

Но после начала мирового энергетического кризиса и подорожания нефти спрос на атомную энергетику вырос. В 70-х годах прошлого столетия эксперты считали, что мощность всех АЭС сможет заменить половину электростанций.

В середине 80-х рост атомной энергетики снова замедлился, сраны начали пересматривать планы на сооружение новых АЭС. Этому способствовали как политика энергосбережения и снижение цены на нефть, так и катастрофа на Чернобыльской станции, которая имела негативные последствия не только для Украины.

После некоторые страны вообще прекратили сооружение и эксплуатацию атомных электростанций.

Атомная энергия для полетов в космос

В космос слетало более трех десятков ядерных реакторов, они использовались для получения энергии.

Впервые ядерный реактор в космосе применили американцы в 1965 году. В качестве топлива использовался уран-235. Проработал он 43 дня.

В Советском Союзе реактор «Ромашка» был запущен в Институте атомной энергии. Его предполагалось использовать на космических аппаратах вместе с Но после всех испытаний он так и не был запущен в космос.

Следующая ядерная установка «Бук» была применена на спутнике радиолокационной разведки. Первый аппарат был запущен в 1970 году с космодрома Байконур.

Сегодня «Роскосмос» и «Росатом» предлагают сконструировать космический корабль, который будет оснащен ядерным ракетным двигателем и сможет добраться до Луны и Марса. Но пока что это все на стадии предложения.

Применение ядерной энергии в промышленности

Атомная энергия применяется для повышения чувствительности химического анализа и производства аммиака, водорода и других химических реагентов, которые используются для производства удобрений.

Ядерная энергия, применение которой в химической промышленности позволяет получать новые химические элементы, помогает воссоздавать процессы, которые происходят в земной коре.

Для опреснения соленых вод также применяется ядерная энергия. Применение в черной металлургии позволяет восстанавливать железо из железной руды. В цветной - применяется для производства алюминия.

Использование ядерной энергии в сельском хозяйстве

Применение ядерной энергии в сельском хозяйстве решает задачи селекции и помогает в борьбе с вредителями.

Ядерную энергию применяют для появления мутаций в семенах. Делается это для получения новых сортов, которые приносят больше урожая и устойчивы к болезням сельскохозяйственных культур. Так, больше половины пшеницы, выращиваемой в Италии для изготовления макарон, было выведено с помощью мутаций.

Также с помощью радиоизотопов определяют лучшие способы внесения удобрений. Например, с их помощью определили, что при выращивании риса можно уменьшить внесение азотных удобрений. Это не только сэкономило деньги, но и сохранило экологию.

Немного странное использование ядерной энергии - это облучение личинок насекомых. Делается это для того, чтобы выводить их безвредно для окружающей среды. В таком случае насекомые, появившееся из облученных личинок, не имеют потомства, но в остальных отношениях вполне нормальны.

Ядерная медицина

Медицина использует радиоактивные изотопы для постановки точного диагноза. Медицинские изотопы имеют малый период полураспада и не представляет особой опасности как для окружающих, так и для пациента.

Еще одно применение ядерной энергии в медицине было открыто совсем недавно. Это позитронно-эмиссионная томография. С ее помощью можно обнаружить рак на ранних стадиях.

Применение ядерной энергии на транспорте

В начале 50-х годов прошлого века были предприняты попытки создать танк на ядерной тяге. Разработки начались в США, но проект так и не был воплощен в жизнь. В основном из-за того, что в этих танках так и не смогли решить проблему экранирования экипажа.

Известная компания Ford трудилась над автомобилем, который бы работал на ядерной энергии. Но дальше макета производство такой машины не зашло.

Все дело в том, что ядерная установка занимала очень много места, и автомобиль получался очень габаритным. Компактные реакторы так и не появились, поэтому амбициозный проект свернули.

Наверное, самый известный транспорт, который работает на ядерной энергии - это различные суда как военного, так и гражданского назначения:

  • Транспортные суда.
  • Авианосцы.
  • Подводные лодки.
  • Крейсеры.
  • Атомные подводные лодки.

Плюсы и минусы использования ядерной энергии

Сегодня доля в мировом производстве энергии составляет примерно 17 процентов. Хотя человечество использует но его запасы не бесконечны.

Поэтому, как альтернативный вариант, используется Но процесс его получения и использования связан с большим риском для жизни и окружающей среды.

Конечно, постоянно совершенствуются ядерные реакторы, предпринимаются все возможные меры безопасности, но иногда этого недостаточно. Примером могут служить аварии на Чернобыльской и Фукусиме.

С одной стороны, исправно работающий реактор не выбрасывает в окружающую среду никакой радиации, тогда как из тепловых электростанций в атмосферу попадает большое количество вредных веществ.

Самую большую опасность представляет отработанное топливо, его переработка и хранение. Потому что на сегодняшний день не изобретен полностью безопасный способ утилизации ядерных отходов.

ЯДЕРНАЯ ЭНЕРГИЯ
Nuclear energy

Ядерная энергия – это энергия, освобождающаяся в результате внутренней перестройки атомных ядер. Ядерную энергию можно получить в ядерных реакциях или радиоактивном распаде ядер. Основные источники ядерной энергии – реакции деления тяжёлых ядер и синтеза (соединения) лёгких ядер. Последний процесс называют также термоядерными реакциями.
Возникновение этих двух главных источников ядерной энергии можно пояснить, рассматривая зависимость удельной энергии связи ядра от массового числа А (количества нуклонов в ядре). Удельная энергия связи ε показывает, какую в среднем энергию необходимо сообщить отдельному нуклону, чтобы все нуклоны были освобождены из данного ядра. Удельная энергия связи максимальна (≈8.7 МэВ) для ядер в районе железа (А = 50 – 60) и уменьшается – резко при переходе к лёгким ядра, состоящим из малого числа нуклонов, и плавно при переходе к тяжёлым ядрам с
А > 200. Благодаря такой зависимости ε от А возникает два вышеупомянутых способа получения ядерной энергии: 1) за счёт деления тяжёлого ядра на два более лёгких, и
2) за счёт соединения (синтеза) двух лёгких ядер и превращения их в одно более тяжёлое. В обоих процессах совершается переход к ядрам, в которых нуклоны связаны сильнее, и часть ядерной энергии связи освобождается.
Первый способ получения энергии используется в ядерном реакторе и атомной бомбе, второй – в разрабатываемом термоядерном реакторе и термоядерной (водородной) бомбе. Термоядерные реакции также являются источником энергии звёзд.
Обсуждаемые два способа получения энергии являются рекордными с точки зрения энергии, приходящейся на единицу массы топлива. Так при полном делении 1 грамма урана выделяется энергия около 10 11 Дж, т.е. примерно та же, что при взрыве 20 кг тринитротолуола (тротила). Таким образом, ядерное горючее эффективнее химического в 10 7 раз.

В природе ядерная энергия выделяется в звёздах , а человеком применяется, в основном, в ядерном оружии и ядерной энергетике , в частности, на атомных электростанциях .

Физические основы

Энергия связи

Хотя ядро состоит из нуклонов, однако масса ядра - это не просто сумма масс нуклонов. Энергия, которая удерживает вместе эти нуклоны, наблюдается как разница в массе ядра и массах составляющих его отдельных нуклонов, с точностью до коэффициента c 2 , связывающего массу и энергию уравнением E = m ⋅ c 2 . {\displaystyle E=m\cdot c^{2}.} Таким образом, определив массу атома и массу его компонент, можно определить среднюю энергию на нуклон, удерживающую вместе различные ядра.

Из графика можно видеть, что очень лёгкие ядра имеют меньшую энергию связи на нуклон, чем ядра, которые немного тяжелее (в левой части графика). Это является причиной того, что в термоядерных реакциях (то есть при слиянии лёгких ядер) выделяется энергия. И наоборот, очень тяжёлые ядра в правой части графика имеют более низкую энергию связи на нуклон, чем ядра средней массы. В связи с этим деление тяжёлых ядер также энергетически выгодно (то есть происходит с выделением ядерной энергии). Следует отметить также, что при слиянии (в левой части) разница масс гораздо больше, чем при делении (в правой части).

Энергия, которая требуется, чтобы разделить полностью ядро на отдельные нуклоны, называется энергией связи E с ядра. Удельная энергия связи (то есть энергия связи, приходящаяся на один нуклон , ε = E с /A , где A - число нуклонов в ядре, или массовое число), неодинакова для разных химических элементов и даже для изотопов одного и того же химического элемента. Удельная энергия связи нуклона в ядре меняется в среднем в пределах от 1 МэВ у лёгких ядер (дейтерий) до 8,6 МэВ у ядер средней массы (с массовым числом А ≈ 100 ). У тяжёлых ядер (А ≈ 200 ) удельная энергия связи нуклона меньше, чем у ядер средней массы, приблизительно на 1 МэВ , так что их превращение в ядра среднего веса (деление на 2 части ) сопровождается выделением энергии в количестве около 1 МэВ на нуклон, или около 200 МэВ на ядро. Превращение лёгких ядер в более тяжёлые ядра даёт ещё больший энергетический выигрыш в расчёте на нуклон. Так, например, реакция соединения ядер дейтерия и трития

1 D 2 + 1 T 3 → 2 H e 4 + 0 n 1 {\displaystyle \mathrm {{_{1}}D^{2}+{_{1}}T^{3}\rightarrow {_{2}}He^{4}+{_{0}}n^{1}} }

сопровождается выделением энергии 17,6 МэВ , то есть 3,5 МэВ на нуклон .

Деление ядер

Появление 2,5 нейтронов на акт деления позволяет осуществить цепную реакцию , если из этих 2,5 нейтронов как минимум один сможет произвести новое деление ядра урана. Обычно испускаемые нейтроны не делят ядра урана сразу же, но сначала должны быть замедлены до тепловых скоростей (2200 м/с при T =300 K). Замедление достигается наиболее эффективно с помощью окружающих атомов другого элемента с малым A , например водорода , углерода и т. п. материала, называемого замедлителем.

Некоторые другие ядра также могут делиться при захвате медленных нейтронов, например 233 U или 239 . Однако возможно также деление быстрыми нейтронами (высокой энергии) таких ядер как 238 U (его в 140 раз больше, чем 235 U) или 232 (его в земной коре в 400 раз больше, чем 235 U).

Элементарная теория деления была создана Нильсом Бором и Дж. Уилером с использованием капельной модели ядра .

Деление ядер также может быть достигнуто с помощью быстрых альфа-частиц , протонов или дейтронов . Однако эти частицы, в отличие от нейтронов, должны иметь большую энергию для преодоления кулоновского барьера ядра.

Высвобождение ядерной энергии

Известны экзотермические ядерные реакции, высвобождающие ядерную энергию.

Обычно для получения ядерной энергии используют цепную ядерную реакцию деления ядер урана-235 или плутония , реже других тяжёлых ядер (уран-238 , торий-232). Ядра делятся при попадании в них нейтрона , при этом получаются новые нейтроны и осколки деления. Нейтроны деления и осколки деления обладают большой кинетической энергией . В результате столкновений осколков с другими атомами эта кинетическая энергия быстро преобразуется в тепло.

Другим способом высвобождения ядерной энергии является термоядерный синтез . При этом два ядра лёгких элементов соединяются в одно тяжёлое. В природе такие процессы происходят на Солнце и в других звёздах, являясь основным источником их энергии.

Многие атомные ядра являются неустойчивыми. С течением времени часть таких ядер самопроизвольно превращаются в другие ядра, высвобождая энергию. Такое явление называют радиоактивным распадом .

Применение ядерной энергии

Деление

В настоящее время из всех источников ядерной энергии наибольшее практическое применение имеет энергия, выделяющаяся при делении тяжёлых ядер. В условиях дефицита энергетических ресурсов ядерная энергетика на реакторах деления считается наиболее перспективной в ближайшие десятилетия. На атомных электрических станциях ядерная энергия используется для получения тепла, используемого для выработки электроэнергии и отопления. Ядерные силовые установки решили проблему судов с неограниченным районом плавания (атомные ледоколы , атомные подводные лодки , атомные авианосцы).

Энергия деления ядер урана или плутония применяется в ядерном и термоядерном оружии (как пускатель термоядерной реакции и как источник дополнительной энергии при делении ядер нейтронами, возникающими в термоядерных реакциях).

Существовали экспериментальные ядерные ракетные двигатели, но испытывались они исключительно на Земле и в контролируемых условиях, по причине опасности радиоактивного загрязнения в случае аварии.

Атомные электростанции в 2012 году производили 13 % мировой электроэнергии и 5,7 % общего мирового производства энергии . Согласно отчёту Международного агентства по атомной энергии (МАГАТЭ), на 2013 год насчитывается 436 действующих ядерных энергетических (то есть производящих утилизируемую электрическую и/или тепловую энергию) реакторов в 31 стране мира . Кроме того, на разных стадиях сооружения находится ещё 73 энергетических ядерных реакторов в 15 странах . В настоящее время в мире имеется также около 140 действующих надводных кораблей и подводных лодок, использующих в общей сложности около 180 реакторов . Несколько ядерных реакторов были использованы в советских и американских космических аппаратах, часть из них всё ещё находится на орбите. Кроме того, в ряде приложений используется ядерная энергия, генерируемая в нереакторных источниках (например, в термоизотопных генераторах). При этом не прекращаются дебаты об использовании ядерной энергии . Противники ядерной энергетики (в частности, такие организации, как «Гринпис ») считают, что использование ядерной энергии угрожает человечеству и окружающей среде . Защитники ядерной энергетики (МАГАТЭ, Всемирная ядерная ассоциация и т. д.), в свою очередь, утверждают , что этот тип энергетики позволяет снизить выбросы парниковых газов в атмосферу и при нормальной эксплуатации несёт значительно меньше рисков для окружающей среды, чем другие типы энергогенерации.

Термоядерный синтез

Энергия термоядерного синтеза применяется в водородной бомбе . Проблема управляемого термоядерного синтеза пока не решена, однако в случае решения этой проблемы он станет практически неограниченным источником дешёвой энергии.

Радиоактивный распад

Энергия, выделяемая при радиоактивном распаде, используется в долгоживущих источниках тепла и бета-гальванических элементах. Автоматические межпланетные станции типа