Ипотека. Законы и проекты. Новости. Калькуляторы. Заработок. Льготы. Доступное жилье
Поиск по сайту

Метод математической индукции интернет урок. Примеры - математическая индукция

Урок № 50

Тема урока : Метод математической индукции.

Цель урока: Познакомиться с сущностью метода математической индукции, научитесь применять этот метод при решении задач на доказательство, продолжить развитие вычислительных навыков, продолжить формирование математической грамотности.

Ход урока.

    Организационный момент. Постановка целей урока

    Активизация опорных знаний.

Определение геометрической прогрессии, формулы n-го члена геометрической прогрессии.

Повторить формулу суммы n первых членов арифметической прогрессии.

Повторить формулу суммы бесконечно убывающей геометрической прогрессии

3. Изучение нового материала

При решении многих задач, при доказательстве справедливости математических предложений, а также при выводе формулы часто используется рассуждение, которое называется методом математической индукции.

Такое рассуждение вы, например, использовали при выводе формулы n -го члена, а также при выводе формулы суммы первых n членов арифметической и геометрической прогрессий.

Сущность этого метода заключается в следующем: если надо установить справедливость некоторого утверждения, в которой фигурирует натуральное число n , то:

1) проверяется, что предполагаемое утверждение имеет место для конкретного значения n (например для n =1).

2) предполагается, что утверждение справедливо при каком-нибудь произвольном значении n = k , и доказывается, что в таком случае оно справедливо и при n = k + 1. Отсюда делается вывод, что утверждение справедливо при любом значении n , ибо справедливость его была обнаружена при n =1, а по доказанному оно верно и при n = 2, а раз справедливо при n = 2, то справедливо и при n = 3 и т.д.

Теперь рассмотрим примеры использования данного метода.

Пример 1. Докажем, что при всяком натуральном n имеет место равенство

Формула верна для n = 1, так как:


Допустим, что формула верна при п = k .

Докажем, что в таком случае она верна и при n = k + 1, т.е.

Непосредственная проверка показала, что формула верна при n =1; следовательно, она будет справедлива также при n = 2, а потому и при n = 3, следовательно, и при п = 4 и вообще при любом натуральном n .

4.Решение задач

249 (а)

В данной задаче требуется доказать формулу n го члена арифметической прогрессии методом математической индукции

    При n =1 имеем а 1 1.

    Допустим, что данная формула верна для k -го члена, т.е имеет место равенство а k = a 1 + d ( k -1)

    Докажем, что в данном случае эта формула верна и для (k +1)-го члена. Действительно,

а k +1 = a 1 + d ( k +1-1) = а 1 + dk

С другой стороны, по определению ариф. прогр. а k +1 = а k + d

Так как левые части двух последних выражений равны = и правые равны:

а k + d = а 1 + dk или а k = a 1 + d ( k -1)

Полученное верное равенство позволяет утверждать, что формула n -го члена арифметической прогрессии подходит для любого натурального n

255

Докажем, что число 11 n+1 +12 2 n -1 при всех натуральных значениях n делиться на 133

    При n =1 имеем 11 1+1 +12 2*1-1 =133, 133 делиться на 133

    Допустим, что при n = k сумма 11 k +1 +12 2 k -1 делиться на 133

    Докажем, что эта сумма делиться на 133 при n = k +1, т.е. 11 k +2 +12 2 k +1 делиться на 133

11 k+2 +12 2k+1 =11*11 k +1 +144*12 k-1 =11*11 k +1 +11*12 2k-1 +133*12 2k-1 =11(11 k+1 +12 2k-1 )+133*12 2k-1

Каждое слагаемое полученной суммы делиться на 133. Следовательно, 11 k +2 +12 2 k +1 тоже делить на 133.

5. Рефлексия

6. Постановка Д/з

§15 решить №251

Вступление

Основная часть

1. Полная и неполная индукция

2. Принцип математической индукции

3. Метод математической индукции

4. Решение примеров

5. Равенства

6. Деление чисел

7. Неравенства

Заключение

Список использованной литературы

Вступление

В основе всякого математического исследования лежат дедуктивный и индуктивный методы. Дедуктивный метод рассуждений - это рассуждение от общего к частному, т.е. рассуждение, исходным моментом которого является общий результат, а заключительным моментом – частный результат. Индукция применяется при переходе от частных результатов к общим, т.е. является методом, противоположным дедуктивному.

Метод математической индукции можно сравнить с прогрессом. Мы начинаем с низшего, в результате логического мышления приходим к высшему. Человек всегда стремился к прогрессу, к умению развивать свою мысль логически, а значит, сама природа предначертала ему размышлять индуктивно.

Хотя и выросла область применения метода математической индукции, в школьной программе ему отводится мало времени. Ну, скажите, что полезного человеку принесут те два-три урока, за которые он услышит пять слов теории, решит пять примитивных задач, и, в результате получит пятёрку за то, что он ничего не знает.

А ведь это так важно - уметь размышлять индуктивно.

Основная часть

По своему первоначальному смыслу слово “индукция” применяется к рассуждениям, при помощи которых получают общие выводы, опираясь на ряд частных утверждений. Простейшим методом рассуждений такого рода является полная индукция. Вот пример подобного рассуждения.

Пусть требуется установить, что каждое натуральное чётное число n в пределах 4< n < 20 представимо в виде суммы двух простых чисел. Для этого возьмём все такие числа и выпишем соответствующие разложения:

4=2+2; 6=3+3; 8=5+3; 10=7+3; 12=7+5;

14=7+7; 16=11+5; 18=13+5; 20=13+7.

Эти девять равенств показывают, что каждое из интересующих нас чисел действительно представляется в виде суммы двух простых слагаемых.

Таким образом, полная индукция заключается в том, что общее утверждение доказывается по отдельности в каждом из конечного числа возможных случаев.

Иногда общий результат удаётся предугадать после рассмотрения не всех, а достаточно большого числа частных случаев (так называемая неполная индукция).

Результат, полученный неполной индукцией, остается, однако, лишь гипотезой, пока он не доказан точным математическим рассуждением, охватывающим все частные случаи. Иными словами, неполная индукция в математике не считается законным методом строгого доказательства, но является мощным методом открытия новых истин.

Пусть, например, требуется найти сумму первых n последовательных нечётных чисел. Рассмотрим частные случаи:

1+3+5+7+9=25=5 2

После рассмотрения этих нескольких частных случаев напрашивается следующий общий вывод:

1+3+5+…+(2n-1)=n 2

т.е. сумма n первых последовательных нечётных чисел равна n 2

Разумеется, сделанное наблюдение ещё не может служить доказательством справедливости приведённой формулы.

Полная индукция имеет в математике лишь ограниченное применение. Многие интересные математические утверждения охватывают бесконечное число частных случаев, а провести проверку для бесконечного числа случаев мы не в состоянии. Неполная же индукция часто приводит к ошибочным результатам.

Во многих случаях выход из такого рода затруднений заключается в обращении к особому методу рассуждений, называемому методом математической индукции. Он заключается в следующем.

Пусть нужно доказать справедливость некоторого утверждения для любого натурального числа n (например нужно доказать, что сумма первых n нечётных чисел равна n 2). Непосредственная проверка этого утверждения для каждого значения n невозможна, поскольку множество натуральных чисел бесконечно. Чтобы доказать это утверждение, проверяют сначала его справедливость для n=1. Затем доказывают, что при любом натуральном значении k из справедливости рассматриваемого утверждения при n=k вытекает его справедливость и при n=k+1.

Тогда утверждение считается доказанным для всех n. В самом деле, утверждение справедливо при n=1. Но тогда оно справедливо и для следующего числа n=1+1=2. Из справедливости утверждения для n=2 вытекает его справедливость для n=2+

1=3. Отсюда следует справедливость утверждения для n=4 и т.д. Ясно, что, в конце концов, мы дойдём до любого натурального числа n. Значит, утверждение верно для любого n.

Обобщая сказанное, сформулируем следующий общий принцип.

Принцип математической индукции.

Если предложение А( n ), зависящее от натурального числа n , истинно для n =1 и из того, что оно истинно для n=k (где k -любое натуральное число), следует, что оно истинно и для следующего числа n=k+1 , то предположение А( n ) истинно для любого натурального числа n .

В ряде случаев бывает нужно доказать справедливость некоторого утверждения не для всех натуральных чисел, а лишь для n>p, где p-фиксированное натуральное число. В этом случае принцип математической индукции формулируется следующим образом. Если предложение А( n ) истинно при n=p и если А( k ) Þ А( k+1) для любого k>p, то предложение А( n) истинно для любого n>p.

Доказательство по методу математической индукции проводиться следующим образом. Сначала доказываемое утверждение проверяется для n=1, т.е. устанавливается истинность высказывания А(1). Эту часть доказательства называют базисом индукции. Затем следует часть доказательства, называемая индукционным шагом. В этой части доказывают справедливость утверждения для n=k+1 в предположении справедливости утверждения для n=k (предположение индукции), т.е. доказывают, что А(k)ÞA(k+1).

ПРИМЕР 1

Доказать, что 1+3+5+…+(2n-1)=n 2 .

Решение: 1) Имеем n=1=1 2 . Следовательно,

утверждение верно при n=1, т.е. А(1) истинно.

2) Докажем, что А(k)ÞA(k+1).

Пусть k-любое натуральное число и пусть утверж-дение справедливо для n=k, т.е.

1+3+5+…+(2k-1)=k 2 .

Докажем, что тогда утверждение справедливо и для следующего натурального числа n=k+1, т.е. что

1+3+5+…+(2k+1)=(k+1) 2 .

В самом деле,

1+3+5+…+(2k-1)+(2k+1)=k 2 +2k+1=(k+1) 2 .

Итак, А(k)ÞА(k+1). На основании принципа математической индукции заключаем, что предпо-ложение А(n) истинно для любого nÎN.

ПРИМЕР 2

Доказать, что

1+х+х 2 +х 3 +…+х n =(х n+1 -1)/(х-1), где х¹1

Решение: 1) При n=1 получаем

1+х=(х 2 -1)/(х-1)=(х-1)(х+1)/(х-1)=х+1

следовательно, при n=1 формула верна; А(1) ис-тинно.

2) Пусть k-любое натуральное число и пусть формула верна при n=k, т.е.

1+х+х 2 +х 3 +…+х k =(х k+1 -1)/(х-1).

Докажем, что тогда выполняется равенство

1+х+х 2 +х 3 +…+х k +x k+1 =(x k+2 -1)/(х-1).

В самом деле

1+х+х 2 +x 3 +…+х k +x k+1 =(1+x+x 2 +x 3 +…+x k)+x k+1 =

=(x k+1 -1)/(x-1)+x k+1 =(x k+2 -1)/(x-1).

Итак, А(k)ÞA(k+1). На основании принципа математической индукции заключаем, что форму-ла верна для любого натурального числа n.

ПРИМЕР 3

Доказать, что число диагоналей выпуклого n-угольника равно n(n-3)/2.

Решение: 1) При n=3 утверждение спра-


А 3 ведливо, ибо в треугольнике

 А 3 =3(3-3)/2=0 диагоналей;

А 2 А(3) истинно.

2) Предположим, что во всяком

выпуклом k-угольнике имеет-

А 1 ся А k =k(k-3)/2 диагоналей.

А k Докажем, что тогда в выпуклом

(k+1)-угольнике число

диагоналей А k+1 =(k+1)(k-2)/2.

Пусть А 1 А 2 А 3 …A k A k+1 -выпуклый (k+1)-уголь-ник. Проведём в нём диагональ A 1 A k . Чтобы под-считать общее число диагоналей этого (k+1)-уголь-ника нужно подсчитать число диагоналей в k-угольнике A 1 A 2 …A k , прибавить к полученному числу k-2, т.е. число диагоналей (k+1)-угольника, исходящих из вершины А k+1 , и, кроме того, следует учесть диагональ А 1 А k .

Таким образом,

 k+1 = k +(k-2)+1=k(k-3)/2+k-1=(k+1)(k-2)/2.

Итак, А(k)ÞA(k+1). Вследствие принципа математической индукции утверждение верно для любого выпуклого n-угольника.

ПРИМЕР 4

Доказать, что при любом n справедливо утвер-ждение:

1 2 +2 2 +3 2 +…+n 2 =n(n+1)(2n+1)/6.

Решение: 1) Пусть n=1, тогда

Х 1 =1 2 =1(1+1)(2+1)/6=1.

Значит, при n=1 утверждение верно.

2) Предположим, что n=k

Х k =k 2 =k(k+1)(2k+1)/6.

3) Рассмотрим данное утвержде-ние при n=k+1

X k+1 =(k+1)(k+2)(2k+3)/6.

X k+1 =1 2 +2 2 +3 2 +…+k 2 +(k+1) 2 =k(k+1)(2k+1)/6+ +(k+1) 2 =(k(k+1)(2k+1)+6(k+1) 2)/6=(k+1)(k(2k+1)+

6(k+1))/6=(k+1)(2k 2 +7k+6)/6=(k+1)(2(k+3/2)(k+

2))/6=(k+1)(k+2)(2k+3)/6.

Мы доказали справедливость равенства и при n=k+1, следовательно, в силу метода математиче-ской индукции, утверждение верно для любого на-турального n.

ПРИМЕР 5

Доказать, что для любого натурального n спра-ведливо равенство:

1 3 +2 3 +3 3 +…+n 3 =n 2 (n+1) 2 /4.

Решение: 1) Пусть n=1.

Тогда Х 1 =1 3 =1 2 (1+1) 2 /4=1.

Мы видим, что при n=1 утверждение верно.

2) Предположим, что равенство верно при n=k

Лекция 6. Метод математической индукции.

Новые знания в науке и жизни добываются разными способами, но все они (если не углубляться в детали) делятся на два вида – переход от общего к частному и от частного к общему. Первый – это дедукция, второй – индукция. Дедуктивные рассуждения – это то, что в математике обычно называют логическими рассуждениями , и в математической науке дедукция является единственным законным методом исследования. Правила логических рассуждений были сформулированы два с половиной тысячелетия назад древнегреческим учёным Аристотелем. Он создал полный список простейших правильных рассуждений, силлогизмов – «кирпичиков» логики, одновременно указав типичные рассуждения, очень похожие на правильные, однако неправильные (с такими «псевдологическими» рассуждениями мы часто встречаемся в СМИ).

Индукция (induction – по-латыни наведение ) наглядно иллюстрируется известной легендой о том, как Исаак Ньютон сформулировал закон всемирного тяготения после того, как ему на голову упало яблоко. Ещё пример из физики: в таком явлении, как электромагнитная индукция, электрическое поле создает, «наводит» магнитное поле. «Ньютоново яблоко» – типичный пример ситуации, когда один или несколько частных случаев, то есть наблюдения , «наводят» на общее утверждение, общий вывод делается на основании частных случаев. Индуктивный метод является основным для получения общих закономерностей и в естественных, и в гуманитарных науках. Но он имеет весьма существенный недостаток: на основании частных примеров может быть сделан неверный вывод. Гипотезы, возникающие при частных наблюдениях, не всегда являются правильными. Рассмотрим пример, принадлежащий Эйлеру.

Будем вычислять значение трехчлена при некоторых первых значенияхn :

Заметим, что получаемые в результате вычислений числа являются простыми. И непосредственно можно убедиться, что для каждого n от 1 до 39 значение многочлена
является простым числом. Однако приn =40 получаем число 1681=41 2 , которое не является простым. Таким образом, гипотеза, которая здесь могла возникнуть, то есть гипотеза о том, что при каждом n число
является простым, оказывается неверной.

Лейбниц в 17 веке доказал, что при всяком целом положительном n число
делится на 3, число
делится на 5 и т.д. На основании этого он предположил, что при всяком нечётномk и любом натуральном n число
делится наk , но скоро сам заметил, что
не делится на 9.

Рассмотренные примеры позволяют сделать важный вывод: утверждение может быть справедливым в целом ряде частных случаев и в то же время несправедливым вообще. Вопрос о справедливости утверждения в общем случае удается решить посредством применения особого метода рассуждений, называемого методом математической индукции (полной индукции, совершенной индукции).

6.1. Принцип математической индукции.

♦ В основе метода математической индукции лежит принцип математической индукции , заключающийся в следующем:

1) проверяется справедливость этого утверждения для n =1 (базис индукции) ,

2) предполагается справедливость этого утверждения для n = k , где k – произвольное натуральное число 1 (предположение индукции) , и с учётом этого предположения устанавливается справедливость его для n = k +1.

Доказательство . Предположим противное, то есть предположим, что утверждение справедливо не для всякого натурального n . Тогда существует такое натуральное m , что:

1) утверждение для n =m несправедливо,

2) для всякого n , меньшего m , утверждение справедливо (иными словами, m есть первое натуральное число, для которого утверждение несправедливо).

Очевидно, что m >1, т.к. для n =1 утверждение справедливо (условие 1). Следовательно,
– натуральное число. Выходит, что для натурального числа
утверждение справедливо, а для следующего натурального числаm оно несправедливо. Это противоречит условию 2. ■

Заметим, что в доказательстве использовалась аксиома о том, что в любой совокупности натуральных чисел содержится наименьшее число.

Доказательство, основанное на принципе математической индукции, называется методом полной математической индукции .

Пример 6.1. Доказать, что при любом натуральном n число
делится на 3.

Решение.

1) При n =1 , поэтому a 1 делится на 3 и утверждение справедливо при n =1.

2) Предположим, что утверждение справедливо при n =k ,
, то есть что число
делится на 3, и установим, что при n =k +1 число делится на 3.

В самом деле,

Т.к. каждое слагаемое делится на 3, то их сумма также делится на 3. ■

Пример 6.2. Доказать, что сумма первых n натуральных нечётных чисел равна квадрату их числа, то есть .

Решение. Воспользуемся методом полной математической индукции.

1) Проверяем справедливость данного утверждения при n =1: 1=1 2 – это верно.

2) Предположим, что сумма первых k (
) нечётных чисел равна квадрату числа этих чисел, то есть . Исходя из этого равенства, установим, что сумма первых k +1 нечётных чисел равна
, то есть .

Пользуемся нашим предположением и получаем

. ■

Метод полной математической индукции применяется для доказательства некоторых неравенств. Докажем неравенство Бернулли.

Пример 6.3. Доказать, что при
и любом натуральномn справедливо неравенство
(неравенство Бернулли).

Решение. 1) При n =1 получаем
, что верно.

2) Предполагаем, что при n =k имеет место неравенство
(*). Используя это предположение, докажем, что
. Отметим, что при
это неравенство выполняется и поэтому достаточно рассмотреть случай
.

Умножим обе части неравенства (*) на число
и получим:

То есть (1+
.■

Доказательство методом неполной математической индукции некоторого утверждения, зависящего от n , где
проводится аналогичным образом, но в начале устанавливается справедливость для наименьшего значенияn .

В некоторых задачах явно не сформулировано утверждение, которое можно доказать методом математической индукции. В таких случаях надо самим установить закономерность и высказать гипотезу о справедливости этой закономерности, а затем методом математической индукции проверить предполагаемую гипотезу.

Пример 6.4. Найти сумму
.

Решение. Найдём суммы S 1 , S 2 , S 3 . Имеем
,
,
. Высказываем гипотезу, что при любом натуральномn справедлива формула
. Для проверки этой гипотезы воспользуемся методом полной математической индукции.

1) При n =1 гипотеза верна, т.к.
.

2) Предположим, что гипотеза верна при n =k ,
, то есть
. Используя эту формулу, установим, что гипотеза верна и приn =k +1, то есть

В самом деле,

Итак, исходя из предположения, что гипотеза верна при n =k ,
, доказано, что она верна и при n =k +1, и на основании принципа математической индукции делаем вывод, что формула справедлива при любом натуральном n . ■

Пример 6.5. В математике доказывается, что сумма двух равномерно непрерывных функций является равномерно непрерывной функцией. Опираясь на это утверждение, нужно доказать, что сумма любого числа
равномерно непрерывных функций является равномерно непрерывной функцией. Но поскольку мы ещё не ввели понятие «равномерно непрерывная функция», поставим задачу более абстрактно: пусть известно, что сумма двух функций, обладающих некоторым свойством S , сама обладает свойством S . Докажем, что сумма любого числа функций обладает свойством S .

Решение. Базис индукции здесь содержится в самой формулировке задачи. Сделав предположение индукции, рассмотрим
функций f 1 , f 2 , …, f n , f n +1 , обладающих свойством S . Тогда . В правой части первое слагаемое обладает свойствомS по предположению индукции, второе слагаемое обладает свойством S по условию. Следовательно, их сумма обладает свойством S – для двух слагаемых «работает» базис индукции.

Тем самым утверждение доказано и будем использовать его далее. ■

Пример 6.6. Найти все натуральные n , для которых справедливо неравенство

.

Решение. Рассмотрим n =1, 2, 3, 4, 5, 6. Имеем: 2 1 >1 2 , 2 2 =2 2 , 2 3 <3 2 , 2 4 =4 2 , 2 5 >5 2 , 2 6 >6 2 . Таким образом, можно высказать гипотезу: неравенство
имеет место для каждого
. Для доказательства истинности этой гипотезы воспользуемся принципом неполной математической индукции.

1) Как было установлено выше, данная гипотеза истинна при n =5.

2) Предположим, что она истинна для n =k ,
, то есть справедливо неравенство
. Используя это предположение, докажем, что справедливо неравенство
.

Т. к.
и при
имеет место неравенство

при
,

то получаем, что
. Итак, истинность гипотезы приn =k +1 следует из предположения, что она верна при n =k ,
.

Из пп. 1 и 2 на основании принципа неполной математической индукции следует, что неравенство
верно при каждом натуральном
. ■

Пример 6.7. Доказать, что для любого натурального числа n справедлива формула дифференцирования
.

Решение. При n =1 данная формула имеет вид
, или 1=1, то есть она верна. Сделав предположение индукции, будем иметь:

что и требовалось доказать. ■

Пример 6.8. Доказать, что множество, состоящее из n элементов, имеет подмножеств.

Решение. Множество, состоящее из одного элемента а , имеет два подмножества. Это верно, поскольку все его подмножества – пустое множество и само это множество, и 2 1 =2.

Предположим, что всякое множество из n элементов имеет подмножеств. Если множество А состоит изn +1 элементов, то фиксируем в нём один элемент – обозначим его d , и разобьём все подмножества на два класса – не содержащие d и содержащие d . Все подмножества из первого класса являются подмножествами множества В, получающегося из А выбрасыванием элемента d .

Множество В состоит из n элементов, и поэтому, по предположению индукции, у него подмножеств, так что в первом классеподмножеств.

Но во втором классе подмножеств столько же: каждое из них получается ровно из одного подмножества первого класса добавлением элемента d . Следовательно, всего у множества А
подмножеств.

Тем самым утверждение доказано. Отметим, что оно справедливо и для множества, состоящего из 0 элементов – пустого множества: оно имеет единственное подмножество – самого себя, и 2 0 =1. ■

Видеоурок «Метод математической индукции» помогает освоить метод математической индукции. Видео содержит материал, помогающий понять суть метода, запомнить особенности его применения, научится применять данный метод при решении задач. Цель данного видеопособия - облегчить освоение материала, формировать умения решать математические задачи методом индукции.

Для удержания внимания учащихся на изучении материала используются анимационные эффекты, иллюстрации, представление информации в цвете. Видеоурок освобождает время учителя на уроке для улучшения качества индивидуальной работы, решения других учебных задач.

Понятие метода математической индукции вводится на примере рассмотрения последовательности a n , в которой a 1 =4, а a n+1 = a n +2n+3. В соответствии с общим представлением члена последовательности, определяется, что a 1 =4, a 2 =4+2·1+3=9, a 3 =9+2·2+3=16, то есть последовательность чисел 4, 9, 16,… Предполагается, что для данной последовательности верно a n =(n+1) 2 . Для указанных членов последовательности - первого, второго, третьего - формула верна. Необходимо доказать справедливость данной формулы для любого сколь угодно большого n. Указывается, что в подобных случаях применяется метод математической индукции, помогающий доказать утверждение.

Раскрывается суть метода. Предполагается справедливость формулы для n=k, значение a k =(k+1) 2 . Необходимо доказать, что равенство будет справедливым также при k+1, что значит a k +1 =(k+2) 2 . Для этого в формуле a k +1 =a k +2k+3 заменяем a k на (k+1) 2 . После подстановки и приведения подобных получаем равенство a k +1 =(k+2) 2 . Это дает право утверждать, что справедливость формулы для n делает ее верной и для n=k+1. Рассмотренное доказательство применительно к последовательности a n , которая представлена числами 4, 9, 16,… и общим членом a n =(n+1) 2 дает право утверждать, если формула превращается в верное равенство для n=1, то также для n=1+1=2, и для 3 и т.д., то есть при всяком натуральном n.

Далее суть метода индукции излагается математическим языком. Принцип метода основан на справедливости утверждения, что факт имеет место для произвольного натурального n при выполнении двух условий: 1) утверждение является верным для n=1 2) из справедливости данной формулы для n=k следует справедливость ее для n=k+1. Из данного принципа следует и строение доказательства, с использованием метода математической индукции. Отмечается, что данный метод предполагает для n=1 доказательство справедливости утверждения, а при предположении справедливости доказательства для n=k доказывается, что верно также для n=k+1.

Разбирается пример доказательства формулы Архимеда методом математической индукции. Дана формула 1 2 +2 2 +3 2 +…+n 2 =n(n+1)(2n+1)/6. На экране проводятся вычисления, выводящие справедливость формулы для n=1. Вторым пунктом доказательства является предположение, что для n=k формула справедлива, то есть она принимает вид 1 2 +2 2 +3 2 +…+k 2 =k(k+1)(2k+1)/6.Основываясь на этом, доказывается, что формула верна и для n=k+1. После подстановки n=k+1 получаем значение формулы 1 2 +2 2 +3 2 +…+k 2 +(k+1) 2 =(k+1)(k+2)(2k+3)/6. Таким образом, формула Архимеда доказана.

Еще в одном примере рассматривается доказательство кратности 7 суммы 15 n +6 для всякого натурального n. В доказательстве пользуемся методом математической индукции. Сначала справедливость утверждения проверяем для n=1. Действительно, 15 1 +6=21. Затем допускаем справедливость для n=k. Это означает, что 15 k +6 является кратным 7. Подстановкой n=k+1 в формулу доказываем кратность 7 значения 15 k +1 +6. После преобразования выражения получаем: 15 k +1 +6=15 k +1 ·14+(15 k +6). Поэтому сумма15 n +6 является кратной 7.

Видеоурок «Метод математической индукции» доходчиво и детально раскрывает суть и механизм применения метода математической индукции в доказательстве. Поэтому данный видеоматериал может послужить не только наглядным пособием на уроке алгебры, но будет полезен при самостоятельном изучении материала учеником, поможет объяснить тему учителю в ходе дистанционного обучения.

МБОУ лицей «Технико-экономический»

МЕТОД МАТЕМАТИЧЕСКОЙ ИНДУКЦИИ

МЕТОД МАТЕМАТИЧЕСКОЙ ИНДУКЦИИ.

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

Методическая разработка «Метод математической индукции» составлена для обучающихся 10 класса математического профиля.

Первоочередные цели: познакомить обучающихся с методом математической индукции и научить применять его при решении различных задач.

В методической разработке рассматриваются вопросы элементарной математики: задачи на делимость, доказательство тождеств, доказательство неравенств, предлагаются задачи различной степени сложности, в том числе и задачи, предлагаемые на олимпиадах.

Роль индуктивных выводов в экспериментальных науках очень велика. Они дают те положения, из которых потом путем дедукции делаются дальнейшие умозаключения. Название метод математической индукции обманчиво – на самом деле этот метод является дедуктивным и дает строгое доказательство утверждениям, угаданным с помощью индукции. Метод математической индукции содействует выявлению связей между различными разделами математики, помогает развитию математической культуры обучающегося.

Определение метода математической индукции. Полная и неполная индукции. Доказательство неравенств. Доказательство тождеств. Решение задач на делимость. Решение различных задач по теме «Метод математической индукции».

ЛИТЕРАТУРА ДЛЯ УЧИТЕЛЯ

1. М.Л.Галицкий. Углубленное изучение курса алгебры и математического анализа. – М.Просвещение.1986.

2. Л.И.Звавич. Алгебра и начала анализа. Дидактические материалы. М.Дрофа.2001.

3. Н.Я.Виленкин. Алгебра и математический анализ. М Просвещение.1995.

4. Ю.В.Михеев. Метод математической индукции. НГУ.1995.

ЛИТЕРАТУРА ДЛЯ ОБУЧАЮЩИХСЯ

1. Н.Я.Виленкин. Алгебра и математический анализ. М Просвещение.1995.

2. Ю.В.Михеев. Метод математической индукции. НГУ.1995.

КЛЮЧЕВЫЕ СЛОВА

Индукция, аксиома, принцип математической индукции, полная индукция, неполная индукция, утверждение, тождество, неравенство, делимость.

ДИДАКТИЧЕСКОЕ ПРИЛОЖЕНИЕ К ТЕМЕ

«МЕТОД МАТЕМАТИЧЕСКОЙ ИНДУКЦИИ».

Урок № 1.

Определение метода математической индукции.

Метод математической индукции является одним из высокоэффективных методом поиска новых результатов и доказательства истинности выдвинутых предположений. Хотя этот метод в математике и не нов, но интерес к нему не ослабевает. Впервые в четком изложении метод математической индукции был применен в 17 веке выдающимся французским ученым Блезом Паскалем при доказательстве свойств числового треугольника, носящего с того времени его имя. Однако идея математической индукции была известна еще древним грекам. В основе метода математической индукции лежит принцип математической индукции, который принимается как аксиома. Идею математической индукции рассмотрим на примерах.

Пример № 1.

Квадрат делится отрезком на две части, затем одна из полученных частей делится на две части и так далее. Определить, на какое число частей разделится квадрат через п шагов?

Решение.

После первого шага мы, по условию, получим 2 части. На втором шаге мы одну часть оставляем без изменений, а вторую – делим на 2 части и получаем 3 части. На третьем шаге мы 2 части оставляем без изменений, а третью делим на две части и получаем 4 части. На четвертом шаге мы 3 части оставляем без изменений, а последнюю часть делим на две части и получаем 5 частей. На пятом шаге мы получим 6 частей. Напрашивается предложение, что через п шагов мы получим (п+1) часть. Но это предложение нужно доказать. Предположим, что через к шагов квадрат разобьется на (к+1) часть. Тогда на (к+1) шаге мы к частей оставим без изменения, а (к+1) часть делим на две части и получим (к+2) части. Замечаете, что так можно рассуждать как угодно долго, до бесконечности. То есть, наше предположение, что через п шагов квадрат будет разбит на (п+1) часть, становится доказанным.

Пример № 2.

У бабушки был внучек, который очень любил варенье, и особенно то, что в литровой банке. Но бабушка не разрешала его трогать. И задумал внучек обмануть бабушку. Он решил съедать каждый день по 1/10 л из этой банки и доливать её водой, тщательно перемешав. Через сколько дней бабушка обнаружит обман, если варенье остается прежним на вид при разбавлении его водой на половину?

Решение.

Найдем, сколько чистого варенья останется в банке через п дней. После первого дня в банке останется смесь, состоящая на 9/10 из варенья и на 1/10 из воды. Через два дня из банки исчезнет 1/10 смеси воды и варенья и останется (в 1л смеси находится 9/10л варенья, в 1/10л смеси находится 9/100лваренья)

9/10 – 9/100=81/100=(9/10) 2 л варенья. На третий день из банки исчезнет 1/10л смеси, состоящей на 81/100 из варенья и на19/100 из воды. В 1л смеси находится 81/100л варенья, в 1/10л смеси 81/1000л варенья. 81/100 – 81/1000=

729/1000=(9/10) 3 л варенья останется через 3 дня, а остальное будет занимать вода. Выявляется закономерность. Через п дней в банке останется (9/10) п л варенья. Но это, опять, только наше предположение.

Пусть к – произвольное натуральное число. Предположим, что через к дней в банке останется (9/10) к л варенья. Посмотрим, что же тогда будет в банке еще через день, то есть, через (к+1) день. Из банки исчезнет 1/10л смеси, состоящей из (9/10) к л варенья и воды. В смеси находится (9/10) к л варенья, в 1/10л смеси (9/10) к+1 л варенья. Теперь мы смело можем заявлять, что через п дней в банке останется (9/10) п л варенья. Через 6 дней в банке будет 531444/1000000л варенья, через 7 дней – 4782969/10000000л варенья, то есть меньше половины.

Ответ: через 7 дней бабушка обнаружит обман.

Попытаемся выделить самое основное в решениях рассмотренных задач. Каждую из них мы начинали решать с рассмотрения отдельных или, как говорят, частных случаев. Затем на основе наших наблюдений, мы высказывали некоторое предположение Р(п) , зависящее от натурального п.

    утверждение проверили, то есть доказали Р(1), Р(2), Р(3);

    предположили, что Р(п) справедливо при п=к и вывели, что тогда оно будет справедливо и при следующем п, п=к+1.

А затем рассуждали примерно так: Р(1) верно, Р(2) верно, Р(3) верно, Р(4) верно,…, значит верно Р(п).

Принцип математической индукции.

Утверждение Р(п) , зависящее от натурального п , справедливо при всех натуральных п , если

1) доказана справедливость утверждения при п=1;

2) из предположения справедливости утверждения Р(п) при п=к следует

справедливость Р(п) при п=к+1.

В математике принцип математической индукции выбирается, как правило, в качестве одной из аксиом, определяющих натуральный ряд чисел, и, следовательно, принимается без доказательства. Метод доказательства по принципу математической индукции обычно называется методом математической индукции. Заметим, что этот метод широко применяется при доказательстве теорем, тождеств, неравенств при решении задач на делимость и многих других задач.

Урок № 2

Полная и неполная индукция.

В случае, когда математическое утверждение касается конечного числа объектов, его можно доказать, проверяя для каждого объекта, например, утверждение «Каждое двузначное четное число является суммой двух простых чисел». Метод доказательства, при котором мы проверяем утверждение для конечного числа случаев, называется полной математической индукцией. Этот метод применим сравнительно редко, так как утверждения чаще всего рассматриваются на бесконечных множествах. Например, теорема «Любое четное число равно сумме двух простых чисел» до сих пор ни доказана, ни опровергнута. Если бы мы даже проверили эту теорему для первого миллиарда, это бы ни на шаг не приблизило бы нас к её доказательству.

В естественных науках применяют неполную индукцию, проверяя эксперимент несколько раз, переносят результат на все случаи.

Пример № 3.

Угадаем с помощью неполной индукции формулу для суммы кубов натуральных чисел.

Решение.

1 3 =1; 1 3 +2 3 =(1+2) 2 ; 1 3 +2 3 +3 3 =(1+2+3) 2 ; 1 3 +2 3 +3 3 +4 3 =(1+2+3+4) 2 ;

1 3 +2 3 +3 3 +4 3 +5 3 =(1+2+3+4+5) 2 ; …; 1 3 +2 3 +…+n 3 =(1+2+…+n) 2 .

Доказательство.

Пусть верно для п=к.

Докажем, что верно для п=к+1.

Вывод: формула для суммы кубов натуральных чисел верна для любого натурального п.

Пример № 4.

Рассмотрите равенства и догадайтесь, к какому общему закону подводят эти примеры.

Решение.

1=0+1

2+3+4=1+8

5+6+7+8+9=8+27

10+11+12+13+14+15+16=27+64

17+18+19+20+21+22+23+24+25=64+125

……………………………………………………………..

Пример № 5.

Запишите в виде суммы следующие выражения:

1)
2)
3)
; 4)
.

греческая буква «сигма».

Пример № 6.

Запишите следующие суммы с помощью знака
:

2)

Пример № 7.

Запишите следующие выражения в виде произведений:

1)

3)
4)

Пример № 8.

Запишите следующие произведения с помощью знака

(прописная греческая буква «пи»)

1)
2)

Пример № 9.

Вычисляя значение многочлена f ( n )= n 2 + n +11 , при п=1,2,3,4.5,6,7 можно сделать предположение, что при любом натуральном п число f ( n ) простое.

Верно ли это предположение?

Решение.

Если каждое слагаемое суммы делится на число, то сумма делится на это число,
не является простым числом при любом натуральном п.

Разбор конечного числа случаев играет важную роль в математике: не давая доказательства того или иного утверждения, он помогает угадать правильную формулировку этого утверждения, если она ещё неизвестна. Именно так член Петербургской академии наук Гольдбах пришел к гипотезе, что любое натуральное число, начиная с двух, является суммой не более чем трёх простых чисел.

Урок № 3.

Метод математической индукции позволяет доказывать различные тождества.

Пример № 10. Докажем, что для всех п выполняется тождество

Решение.

Положим


Нам надо доказать, что



Докажем, что Тогда из истинности тождества

следует истинность тождества

По принципу математической индукции доказана истинность тождества при всех п .

Пример № 11.

Докажем тождество

Доказательство.


почленно получившиеся равенства.

;
. Значит, данное тождество истинно для всех
п .

Урок № 4.

Доказательство тождеств методом математической индукции.

Пример № 12. Докажем тождество

Доказательство.


Применяя принцип математической индукции, доказали, что равенство верно при всех п .

Пример № 13. Докажем тождество

Доказательство.


Применяя принцип математической индукции, доказали, что утверждение верно при любом натуральном п .

Пример № 14. Докажем тождество

Доказательство.


Пример № 15. Докажем тождество

1) п=1;

2) для п=к выполняется равенство

3) докажем, что равенство выполняется для п=к+1:

Вывод: тождество справедливо для любого натурального п.

Пример № 16. Докажем тождество

Доказательство.

Если п=1 , то

Пусть тождество выполняется при п=к.

Докажем, что тождество выполняется при п=к+1.



Тогда тождество справедливо для любого натурального п .

Урок № 5.

Доказательство тождеств методом математической индукции.

Пример № 17. Докажем тождество

Доказательство.

Если п=2 , то получаем верное равенство:

Пусть равенство верно при п=к:

Докажем справедливость утверждения при п=к+1.

Согласно принципу математической индукции, тождество доказано.

Пример № 18. Докажем тождество
при п≥2.

При п=2 это тождество перепишется в очень простом виде

и, очевидно, верно.

Пусть при п=к действительно

.

Докажем справедливость утверждения при п=к+1, то есть выполняется равенство: .

Итак, мы доказали, что тождество верно при любом натуральном п≥2.

Пример № 19. Докажем тождество

При п=1 получим верное равенство:

Предположим, что при п=к получаем также верное равенство:

Докажем, что наблюдается справедливость равенства при п=к+1:

Тогда тождество справедливо при любом натуральном п .

Урок № 6.

Решение задач на делимость.

Пример № 20. Доказать методом математической индукции, что

делится на 6 без остатка.

Доказательство.

При п=1 наблюдается деление на 6 без остатка,
.

Пусть при п=к выражение
кратно
6.

Докажем, что при п=к+1 выражение
кратно
6 .

Каждое слагаемое кратно 6 , следовательно сумма кратна 6 .

Пример № 21.
на
5 без остатка.

Доказательство.

При п=1 выражение делится без остатка
.

Пусть при п=к выражение
также делится на
5 без остатка.

При п=к+1 делится на 5 .

Пример № 22. Доказать делимость выражения
на
16.

Доказательство.

При п=1 кратно 16 .

Пусть при п=к
кратно
16.

При п=к+1

Все слагаемые делятся на 16: первое – очевидно, второе по предположению, а в третьем – в скобках стоит четное число.

Пример № 23. Доказать делимость
на
676.

Доказательство.

Предварительно докажем, что
делится на
.

При п=0
.

Пусть при п=к
делится на
26 .

Тогда при п=к+1 делится на 26 .

Теперь проведем доказательство утверждения, сформулированного в условии задачи.

При п=1 делится на 676.

При п=к верно, что
делится на
26 2 .

При п=к+1 .

Оба слагаемых делятся на 676 ; первое – потому, что мы доказали делимость на 26 выражения, стоящего в скобках, а второе делится по предположению индукции.

Урок № 7.

Решение задач на делимость.

Пример № 24.

Доказать, что
делится на 5 без остатка.

Доказательство.

При п=1
делится на
5.

При п=к
делится на
5 без остатка.

При п=к+1 каждое слагаемое делится на 5 без остатка.

Пример № 25.

Доказать, что
делится на 6 без остатка.

Доказательство.

При п=1
делится на
6 без остатка.

Пусть при п=к
делится на
6 без остатка.

При п=к+1 делится на 6 без остатка, так как каждое слагаемое делится на 6 без остатка: первое слагаемое – по предположению индукции, второе – очевидно, третье – потому, что
четное число.

Пример № 26.

Доказать, что
при делении на 9 дает остаток 1 .

Доказательство.

Докажем, что
делится на 9 .

При п=1
делится на 9 . Пусть при п=к
делится на
9 .

При п=к+1 делится на 9 .

Пример № 27.

Доказать, что делится на 15 без остатка.

Доказательство.

При п=1 делится на 15 .

Пусть при п=к делится на 15 без остатка.

При п=к+1

Первое слагаемое кратно 15 по предположению индукции, второе слагаемое кратно 15 – очевидно, третье слагаемое кратно 15 , так как
кратно
5 (доказано в примере № 21), четвертое и пятое слагаемые также кратны 5 , что очевидно, тогда сумма кратна 15 .

Урок № 8-9.

Доказательство неравенств методом математической индукции

Пример № 28.
.

При п=1 имеем
- верно.

Пусть при п=к
- верное неравенство.

При п=к+1

Тогда неравенство справедливо для любого натурального п .

Пример № 29. Доказать, что справедливо неравенство
при любом п .

При п=1 получим верное неравенство 4 >1.

Пусть при п=к справедливо неравенство
.

Докажем, что при п=к+1 справедливо неравенство

Для любого натурального к наблюдается неравенство .

Если
при
то



Пример № 30.

при любом натуральном п и любом

Пусть п=1
, верно.

Предположим, что неравенство выполняется при п=к :
.

При п=к+1

Пример № 31. Доказать справедливость неравенства

при любом натуральном п .

Докажем сначала, что при любом натуральном т справедливо неравенство

Умножим обе части неравенства на
. Получим равносильное неравенство или
;
; - это неравенство выполняется при любом натуральном т .

При п=1 исходное неравенство верно
;
;
.

Пусть неравенство выполняется при п=к:
.

При п=к+1

Урок № 10.

Решение задач по теме

Метод математической индукции.

Пример № 32. Доказать неравенство Бернулли.

Если
, то для всех натуральных значений п выполняется неравенство

Доказательство.

При п=1 доказываемое неравенство принимает вид
и, очевидно, справедливо. Предположим, что оно верно при
п=к , то есть что
.

Так как по условию
, то
, и потому неравенство не изменит смысла при умножении обеих его частей на
:

Так как
, то получаем, что

.

Итак, неравенство верно при п=1 , а из его истинности при п=к следует, что оно истинно и при п=к+1. Значит, в силу математической индукции оно имеет место для всех натуральных п.

Например,

Пример № 33. Найти все натуральные значения п , для которых справедливо неравенство

Решение.

При п=1 неравенство справедливо. При п=2 неравенство также справедливо.

При п=3 неравенство уже не выполняется. Лишь при п=6 неравенство выполняется, так что за базис индукции можно взять п=6.

Предположим, что неравенство справедливо для некоторого натурального к:

Рассмотрим неравенство

Последнее неравенство выполняется, если
Контрольная работа по теме п=1 задана рекуррентно: п≥5 , где п - -натуральное число.